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Abstract 

fitting is a Fortran subroutine that constructs a smooth, generalized four- 

parameter probability distribution model. It is fit to the first four statistical moments 

of the random variable X (i. e., average values of X, X2, X3, and X4) which can be 

calculated from data using the associated subroutine calmom. The generalized model 

is produced from a cubic distortion of the parent model, calibrated to match the first 

four moments of the data. This four-moment matching is intended to provide models 

that are more faithful to the data in the upper tail of the distribution. Examples are 

shown for two specific cases. 
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Executive Summary 

fitting is a Fortran subroutine that constructs a smooth, generalized four-parameter 

probability distribution model. It is fit to the first four statistical moments of the 

random variable X (i.e., average values of A’, X2, X3, and X4) which can be calculated 

from data using the associated subroutine calmom. 

This distribution is said to be “generalized” in that it generalizes three conven- 

tional, standard two-parameter “parent” distribution models. The user may select 

here between Gaussian, Gumbel, or Weibull parent models. The generalized model 

is produced from a cubic distortion of the parent model, calibrated to match the first 

four moments of the data. This four-moment matching is intended to provide models 

that are more faithful to the data in the upper tail of the distribution. 

Examples are shown here for two specific cases: modelling rainflow-counted load 

ranges and extreme wave heights, based respectively on Weibull and Gumbel parent 

models. To use fitting to fit a distribution to data, a separate subroutine, calmorn, 

is included to determine the first four statistical moments of the input data set. 

Because these moments are required input to fitting, the routines calmom and 

fitting together serve as a general distribution fitting algorithm. A sample driver 

program is included to illustrate the usage and interpretation of fitting and calmom 

for the two examples. 
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Chapter 1 

The fitting Subroutine 

1.1 What fitting Does 

fitting is a Fortran subroutine that constructs a smooth, generalized four-parameter 

probability distribution model. The first four statistical moments of the random 

variable X (i. e., average values of X, X2, X3, and X4) are used by the subroutine 

to establish the generalized distribution. These moments can be based on theory; 

however, they are almost always derived fmrn data. A separate subroutine calmom is 

provided to compute the required moments for an arbitrary data set. 

This distribution is said to be “generalized” in that it generalizes three conven- 

tional, standard two-parameter “parent” distribution models. The user may select 

here between Gaussian, Gurnbel, or Weibull parent models. The generalized model is 

then prodl]ced from a cubic distortion of the parent, model, calibrated to match the 

first four momcllts of the data. (Depending on the numerical values of the moments, 

an inverse cubic distortion may also be used. ) This four-moment matching is intended 

to provide models that are more faithful to the extreme values of the data, commonly 

referred to as the upper tail region. 

By invoking various parent models, the user is able to reflect reasonable “prior” 

probability distribution choices based on the context at hand. For example, val- 

ues from a random process may be assigned Gaussian distribution if sampled at an 

arbitrary time, Weibull distribution if sampled at an arbitrary peak, or Gumbel distri- 

bution if sampled at a global peak in a fixed duration (Benjamin and Cornell, 1970). 

These three distributions are included here as possible parent distribution choices. 

Examples are shown here for two specific cases: modelling rainflow-counted load 

ranges and extreme wave heights, based respectively on Weibull and Gurnbel parent 

models. Notably, we find that over a range of practical values, these applications are 

controlled by the four moment values and are relatively insensitive to the underlying 

parent distribution choice. Because this conclusion may change with the application, 
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Values Z1 [kip-ft]: 

9.250 

9.500 

9.750 

10.000 

10.250 

10.500 

10.750 

11.000 

12.000 

13.000 

14.000 

15.000 

Probabilities pi= F(zi): 

0.004 

0.058 

0.146 

0.251 

0.360 

0.465 

0.561 

0.645 

0.862 

0.!34!3 

0.981 

0.993 

Table 1.1: Predicted probabilities, pi, of not exceeding various x levels. 

fitting allows the user to implement various parent distributions and assess the 

sensitivity to this choice. 

1.1.1 Overview of Capabilities 

The subroutine fitting has two options. In the first option, the user can provide 

arbitrary values 01, . . . . xN of the physical variable, and the routine returns corre- 

sponding probability values, p;, that the random variable is less than the value xi. 

Formally, pi is known as F(zi), the cumulative distribution function (CDF) of X. The 

second option works in the opposite direction: the user provides specified cumulative 

probability values pi, and the routine returns levels xi of the physical variable. In this 

case, the output levels x, are known as specific fractiles of the probability distribution. 

Note that both options require the first four statistical moments of X to be input. 

As a simple example, consider the edgewise bending moment range X on a wind 

turbine blade (Coleman, 1989). Figure 1.1 shows the cycle counts (rainflow counted) 

for a 71 minute time history of observed edgewise moments. The clustering of counts 

in the moment ranges around 9-15 and O-5 kip-ft is attributed to the dominant gravity 

induced loading combined with the turbulent effects of the wind respectively. From 

the viewpoint of fatigue damage, ranges less than 9 kip-ft contribute less than 5% to 

the total damage and are considered insignificant. Table 1.1 shows the cumulative 

distribution, F(x), of applied loads above this level as predicted by fitting. 

For example, Table 1.1 shows that among all loads above xmin=9 [kip-ft], the load 

level 9.5 [kip-ft] is not exceeded 5.8% of the time—and hence exceeded the remaining 
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NPS HAWT Data - Rainflow Counted Ranges 

r 1 I 1 1 I 

--l 

J- 

15 20 25 5 10 
Bending Moment Range (ft-kips) 

Figure 1.1: Histogram of Edgewise Bending Llornent Time Series Data 

!34.2Y0 of the time. Similarly, this table shows that a typical, central load value is 

around 10.5 [kip-ft]. Strictly, this value is not exceeded 46.5Cio of the time; i.e., the 

median value of the load X—which has 5070 chance of being exceeded–is between 

10.5 and 10.75 [kip-ft]. We show in Section 2.2 how these values are estimated from 

the fitting routines. We also show how, if we invoke the second option of fitting, 

we can directly estimate the median level (for which J’(z)=p~ is specified to be 0.5) to 

be 10.59 [kip-ft]. Notice also from Table 1.1 that probabilities for values that exceed 

the range of observed values can be requested. 

In general, one may consider three distinct ways to use fitting: 

● 

● 

● 

One option of the subroutine fitting takes input values ~i and estimates the 

cumulative probability ~}i of falling below each .Zi. For example, data in the first 

column of Table 1.1) are input and the second column values are output. 

With this same option, the differences p, –pi-l between these cumulative proba- 

bilities can be used to give estimates of a theoretical histogram (i.e., probability 

content in various discretimd “cells” or “bin s.” ) For example, Table 1.1 can 

be used to directly prodllce a histogram, with probability .032 assigned to the 

interval (9.2,5, 9.50), probability .126 -.032=.09-1 to the interval (9.50, 9.75), and 

so forth. 

The other option of the subroutine fitting takes input values ~~i and returns 

corresponding values .cI. For example, data in the second column of Table 1,1 
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are input and the first column values are output. This is useful, for example, if 

the user can more easily specify interesting values of pi rather than x; values a 

priori. 

1.1.2 Subroutine calmom 

fitting requires the first four statistical moments of the random variable, X, as in- 

put. These moments can be based on either theoretical considerations or derived from 

a particular set of data. To use fitting to fit a distribution to data, a separate sub- 

routine, calmom, is included to accurately estimate the first four statistical moments 

of the input data set. Input and output, for the calmom subroutine are described in 

Section 1.3< 

Because these moments are required input to fitting, the routines calmom and 

fitting together serve as a general distribution fitting algorithm. A sample driver 

program is included to illustrate the usage and interpretation off itting and calmom 

for two example problems given in Chapters 2 and 3. 

1.1.3 How to Read or Not Read This Manual 

We recognize that there are two distinct types of computer users: those who read 

manuals thoroughly and those who go to great lengths to avoid doing so. For this 

latter group, who prefer to learn by example, }ve have included a driver program 

with detailed comments, and the sample input and output used to generate Table 

1.1. Those users may wish to proceed to the driver source code listing, also given 

in Appendix A. Additional description of the driver and this example, based on a 

generalized Weibull model, is given in Chapter 2. Chapter 3 describes an alternate 

application to extreme wave height levels, using a generalized Gumbel model. 

Those who prefer a more precise overview of f itt ing are referred to the remainder 

of Chapter 1. Section 1.2 describes its input and output arguments and calling syntax, 

while Section 1.3 discusses the usage and arguments of the subroutine calmom which 

computes statistical moments for a given data set. 

Finally, Chapter 4 brings together a number of more detailed technical issues con- 

cerning fitting. These range from underlying motivation (Section 4.1) to the basic 

methodology underlying fitting (Section 4.2) and calmom (Section 4.3). Section 4.4 

includes various additional practical notes on their usage, limitations and potential 

error conditions. 
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1.2 fitting Input and Output 

The user can call fitting with the following command: 

call fitting (itype, xmom, ndata, xmin, x,cdf, nx, pmom, iflag, ioout, etol) 

Each component of the fitting argument list is defined below. output quantities 

include the array pmom and, depending on the value of iflag, either x or calf. All 

other quantities are input. 

● itype: index used to define the parent distribution used by fitting 

itype = 1: Gaussian distribution 

itype = 2: Gumbel distribution 

itype = 3: Weibull distribution 

● xmom(l)l: mean, PC = E[A’] = JJIZZ~(Z)dZ; j(z)= PDF of X 

● xmom(2)l: standard deviation, o= = {E[(Z–PZ)2]}l/2 = {J~ll Z(Z–PZ)2~(Z)dX}l/2 

● xmom(s) 1: skewness, CY3 = E[(~)3] = fa[~ ~(~)3~(x)dz 

● xmom(q)l: kurtosis, a~ = E[(~)4] = f~ll ~(&)4~(z)dx 

● ndatal: Number of sample data used to estimate moments in xmom. If ndata< 

100, fitting checks by simulation that these moments do not have excessive 

bias (Section 4.3). The user can avoid this simulation check by setting ndata 

> 100 on input. 

● xmin: optional shift parameter to be applied in the Weibull case (itype=3), 

Note that the standard Weibull model produces values for X ~ O, while the 

Gaussian and Gumbel models are unbounded. If the user inputs a nonzero 

value of xmin, a shifted Weibu]l model (standard W’eibull model of X– xmin) 

is then used as a parent distribution. Accordingly, in this case xmom(l) . . . 

xmom(4) should contain moments of the shifted variable X— xmin. (This is 

precisely what is returned by the routine calmom when xmin is nonzero. ) The 

data shown in figure 1.1 is a good example of using this variable (xmin = 9.o) 

when only the upper portion of the data is important. Note finally that fitting 

ignores the value of xmin if the Gaussian or Gurnbel distribution is selected. 

● x: array containing values of the physical variable. 

lsectlon 1,3 ~xp]ains these moments further and subroutine calmom ~lsed to compute them 
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● cdf: array containing the cumulative (non-exceedance) probabilities correspond- 

ing to each xl in the x array above. 

● nx: number of x or cdf values requested. 

● Prnorn: arraY Of the absoIute moments Of the fitted distribution: 

pmom(n): the n-th absolute moment, J!7[X”] = J~ll ~ z“~(z)dz 

The first four moments will be consistent with the input moments given in xmom, 

within the error tolerance described below. Higher moments may be of interest 

in other applications; e.g., fatigue damage of various materials. Here n= 10 

moments are output, using the probability density function ~(z) estimated by 

the Generalized distribution model. 

● iflag: index used to define the type of calculation to be performed by fitting 

if lag = O: returns output estimates of x for each of the cumulative probabilities 

input in the array calf. 

if lag = 1: returns output estimates of probabilities cdf for each of the physical 

values input in the array x. 

● ioout: logical unit number for writing error messages. The calling program 

should make a file available for error messages by opening a file with ioout as 

its logical unit number. (The sample driver illustrates this in Chapter 2.) 

● etol: the error tolerance in matching higher moments. This is defined formally 

in Eq. 4.2. In general, there is a tradeoff between moment accuracy and com- 

putation time. Based on experience with various tolerances, we use the value 

etol=.01 in our examples. This may be changed by the user. 

If the theoretical moments xmom(i) are known, the fitting routine can be applied 

directly. In practice, it is often necessary to estimate these statistical moments from a 

set of data. A separate subroutine, calmom, is supplied here to compute the required 

moments from data; i.e., to act as a pre-processor for fitting routine. The procedure 

used to compute these moments is discussed in section 4.3, and its use is demonstrated 

in Chapter 2. 

The Role of the Lower Threshold xmin. In most applications of the Weibull 

model we seek to model all possible values of a positive quantity (e. g., stress range, 

number of cycles to failure, etc.). In certain applications, however, the user may 

wish to impose a non-zero lower-bound xmin. This is useful, for example, if we 

wish to exclude lower values as non-physical, or due to a fundamentally different 

probability distribution. We have found this useful, for example, in modelling some 

edgewise bending loads on a turbine blade. In this case, we seek to exclude small, 

non-damaging loads produced by a different mechanism: low amplitude (turbulence 

induced) cycles superimposed on marked gravity-driven bending moment ranges. This 

case is illustrated further in the example of Chapter 2. 
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1.3 calmom Input and Output 

The subroutine calmom estimates the first four statistical moments zmom(i), 2=1...4, 

from an input data set. It can thus serve as a preprocessor to fitting. 

The calmom argument list is: 

subroutine calmom(xmom, data, ndata, nrmax, xmin, itype) 

The input to calmom are the following: 

● data: array containing the data for which the moments are to be calculated. 

● ndata: number of data points in array data. 

● nrmax: dimension size of array data (should be consistent with that used in 

calling program). 

● xmin: threshold value of the physical variable, as used in fitting (see descrip- 

tion of xmin in section 1.2 and the example problem in Chapter 2). 

● itype: index used to define the parent distribution used by fitting 

itype = 1: Gaussian distribution 

itype = 2: ~urnbel distribution 

itype = 3: Wcibull distribution 

The sample data input via the array data, can be arranged in any order and 

does not need to be sorted in increasing magnitude as shown in the example input of 

Table 2.1. Also, calmom screens the array data remo~ing any values that are below 

the threshold xmin. 

On output the array xmom contains the sample moments of the data, as defined 

in section 1.2. These can then be used directly as input to the routine fitting. The 

theoretical background for calmom is described in Section 4.3. 

1.4 The Driver Program 

A single dri~w program is used to demonstrate the use of subroutines fitting and 

calmom for two examples. 

In general, the source code is distributed in three separate film: 
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calmom.for: The calmom subroutine to estimate moments from an input data set. 

fitting. for: The fitting subroutine, to use these moments to estimate the entire 

distribution function of X. 

driver.for: A separate driver program that calls these routines (listing in Appendix 

A). 

This driver program is included to help speed the reader’s understanding and imple- 

mentation of fitting. The example shown here can thus be run without creating 

any additional source code. One needs merely to compile and link the three source 

codes listed above, and execute with the input files provided. 

Of course, prospective users are encouraged to modify the driver program accord- 

ing to their needs. Toward that end, it is hoped that driver. f or can provide a useful 

template. For those users who prefer to learn by example, we recommend reading the 

source code of driver. for as a useful starting point. 

Analysis Steps. As implemented in driver. f or, the analysis proceeds in the 

following steps: 

1. Read control data: itype, xmin, iflag, and the array cdf or x used as input 

to fitting. 

2. Read input data: the array data used as input to calmom, which calculates the 

necessary moment input for fit t ing. 

3. Call calmom to estimate moments. 

4. Call fitting to estimate the corresponding full distribution function. 

5. Write results. 

These steps are clearly delineated in comments contained within the source code of 

driver. 

File Architecture. In the current coding of the driver (Appendix A), two input 

files are expected: 

driver. in: Input file containing control data read in step 1 above. 

driver.dat: Input file containing physical data read in step 2 above. 

Together with the three source code files, we are distributing input files for two 

examples: (1) weibull. in, weibull .dat; and (2) gumbel. in, gumbel .dat. The user 
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should note that to implement one of these examples, the input files *. in and *. dat 
(*= ’weibull’ or ‘gumbel’) should be copied to driver. in and driver. dat before 

executing. The corresponding output file, driver. out, should then agree with the 

file * . out that has been distributed. 

The examples described in Chapters 2 and 3 provide tables that identify more 

clearly the contents of the files driver. in and driver .dat. 



Chapter Z 

Fatigue Load Modelling: A Generalized 

Weibull Example 

This chapter describes the first example, which relates to fatigue load modelling. The 

next chapter describes an alternate application to extreme wave height modelling. 

2.1 Wind Turbine Loads Example 

This example concerns the edgewise bending moments shown in figure 1.1 of Chapter 

1 (Coleman, 1989). We consider here 8913 values of X= bending moment range [kip- 

ft], as found by rainflow counting (Fuchs and Stephens, 1980). The data are stored 

in the file weibull. dat. Table 2.1 gives a partial listing of these values. For the 

sake of clarity they are input in increasing order; however, this is not required by the 

program. 

A separate analysis of these data (Winterstein and Lange, 1994) has shown that 

bending moment ranges below 9 kip-ft do not contribute to the total fatigue damage 

given by this data set. Since the application for the load model is a fatigue analysis of 

the HAWT blade, we choose to fit the model above a lower threshold xmin=9 [kip-ft]. 

Note that only 4819 ranges are above this threshold. 

This threshold is set in the first line of the input file weibull . in. Table 2.2 lists 

this file. The first line also contains the values iflag=l and itype=3. The value 

iflag=l indicates that values of x are to follow on the subsequent lines in the file, 

and the program is to calculate corresponding cdf values. The value itype=3 tells 

the fitting routine to select Weibull as the parent distribution. The remaining lines 

list the actual x values requested, which are the same as in column 1 of Table 1.1. 

Output. The driver produces a single output file, driver. out, which we have 

stored here as weibull . out. Table 2.3 lists weibull . out for our example. The 
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Line number i: 

1 

2 

3 

4092 

4093 

4094 

4095 

4096 

4097 

8911 

Data z; [kip-ft]: 

0.0190 
0.0190 

0.0190 

8.9810 

8.9820 

8.9820 

9.0010 

9.0010 

9.0010 

18.0420 
180990” ..-. 

20.4990 

Table 2.1: Abridged listing of edgewise moment ranges [kip-ft] from weibull . dat. 

File contains column 2 data only; line numbers are inserted here for clarity. 

!).00 1 3 ; XMIN=LOWER THRESHOLD, IFLAG=l TO GET CDF FOR GIVEN X, ITYPE=3 TO FIT GENERALIZED WEIBULL 

9.25 

9.50 

9.75 

10.00 

10.25 

10.50 

10.75 

11.00 

12.00 

13.00 

14.00 

15.00 

‘lkble 2.2: Listing of input file, weibull . in, with control data for driver program. 
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NPS data - Edgewise Bending Moment; Xmin = 9.0 [ft-kips] 

.999 

.20 

.10 

.. --” 
Rainflow ranges — . ..-” 

Generalized Weibull ---- 

1 10 
Shifted Bending Moment Range, (X-Xmin) [ft-kips] 

Figure 2.1: Generalized Weibull Distribution for Fatigue Loads-4819 Data. 

fractile results reported by fitting are precisely those given in Chapter 1 (Table 

1.1 ). Note also that the output confirms that 4819 data points have been found above 

the input lower threshold of x=9. It also reports the first four moments from these 

data, as estimated by calmom, that are used as input to fitting. Finally, the model 

predicts the first 10 absolute moments, E[X’]. Note that these are consistent with 

the first four moments found for the data. For example, EIXl] =1 .831, the mean value 

p., while E[X2]=o~ + p2 ~, or 1.1542 + 1.8312=4.685. Similarly, the predicted third 

and fourth moments can be shown to be consistent with those estimated from the 

data. The main virtue of the routine, of course, is that it seeks to predict still higher 

moments more accurately—through introduction of a smooth distribution model— 

than would be possible from the data alone. 

Figure 2.1 compares the fitted distribution function F’(z) with the data. (These 

results have been obtained by running the fitting routine over a larger range of 

z values than shown in the example. ) Results are shown on “Weibull probability 

scale,” on which the parent Weibull model appears as a straight line. It appears that 

the generalized Weibull model reflects the curvature of the data shown on this scale, 

particularly in the upper tail of interest (which is most heavily weighted by the third 

and fourth moments). 
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Lower Threshold Value: 9.000 

Number of Data Processed: 4819 

** MOMENT RESULTS ** 

Mean: 1.831 

Standard Deviation: 1.154 

Skewness: 1.552 

Kurtosis: 7.449 

** FRACTILE RESULTS (FITTING) ** 

x: CDF : 

9.250 0.004 

9.500 0.058 

9.750 0.146 

10.000 0.251 

10.250 0.360 

10.500 0.465 

10.750 0.561 

11.000 0.645 

12.000 0.862 

13.000 0.949 

14.000 0.981 

15.000 0.993 

** PREDICTED MOMENTS (FITTING) ** 

N: E[X**N]: 

1.000 0,183E+OI 

2.000 0.469E+Oi 

3.000 0.159E+02 

4.000 0.688E+02 

5,000 0.377E+03 

6.000 0.259E+04 

7.000 0.221E+05 

8.000 0.234E+06 

9.000 0.302E+07 

10.000 0.472E+08 

Table 2.3: Listing of output file, weibull .out, produced by driver program. 
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9.00 03 ; XMIN=LOWER THRESHOLD; lFLAG=O TO GET X FOR GIVEN CDF, 1TYPE=3 TO FIT GENERALIZED WEIBULL 

0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

0.80 

0.90 

0.99 

0.999 

Table 2.4: Listing of input file for iflag=O option. 

2.2 Alternate Usage of fitting 

Finally, we illustrate the if lag=O option off itt ing. For example, if the weibull. in 

content is modified as shown in Table 2.4, Table 2.5 shows the corresponding out- 

put. The data file weibull. dat remains the same, and hence all moment results are 

unchanged. The only difference is that in this case, the distribution fractiles x have 

been evaluated at the requested probability levels given in the input file driver. in 

(Table 2.4). For example, as noted in Chapter 1, the median value of X (with 50% 

chance of being exceeded) is found to be 10.589. The values of bending moment that 

are not exceeded 9970 and 99.970 of the time were also determined. 
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Lower Threshold Value: 9.000 

Number of Data Processed: 4819 

** MOMENT RESULTS ** 

Mean: 1.831 

Standard Deviation: 1.154 

Skewness: 1.552 

Kurtosis: 7.449 

** FRACTILE RESULTS (FITTING) ** 

x: CDF : 

9.627 

9.882 

10.114 

10.345 

10.589 

10.861 

11.188 

11.620 

12.324 

14.664 

17.255 

0.100 

0.200 

0.300 

0.400 

0.500 

0.600 

0.700 

0.800 

0.900 

0.990 

0.999 

** PREDICTED MOMENTS (FITTING) ** 

N: E[X**N]: 

1.000 0.183E+01 

2.000 0.469E+01 

3.000 0.159E+02 

4.000 0.688E+02 

5.000 0.377E+03 

6.000 0.259E+04 

7.000 0.221E+05 

8.000 0.234E+06 

9.000 0.302E+07 

10.000 0.472E+08 

Table 2.5: Listing of output file, generated from iflag=O input file given in Table 

2.4. 



Chapter 3 

Extreme Values: A Generalized Gumbel 

Example 

This chapter illustrates the use of the fitting routine to fit a generalized Gum- 

bel distribution to extreme values. The driver program used for this demonstration 

is described in Chapter 1. This driver program reads the relevant input data for 

this example and passes them to the calmom and fitting routines to construct the 

generalized Gumbel distribution. 

This example concerns the significant wave height H. in a Southern North Sea 

location, for which 19 years of hindcast data are available (Danish Hydraulic Institute, 

1989). For each of these 19 years, a single storm event has been identified with 

maximum significant wave height H. (i.e. the extreme values). This value ranges 

from H. = 6.92m (1972/1973) to 9.66m (1981/1982). A sorted list of all 19 values is 

reported in Table 3.1. 

This chapter has two sections. The first section deals with the generalized Gumbel 

model for the significant wave height data. The second section compares the three 

different generalized distribution models for the same data set. 

Finally, it should be noted that a generalized Gumbel model has previously been 

fit to this data set (Winterstein and Haver, 1991 ). The results shown here are an 

improvement in two senses: ( 1 ) fitting permits greater accuracy to be achieved in 

matching moments; and (2) fitting includes an inverse cubic transformation, which 

is particularly important in reflecting the narrower-than- Gumbel tails similar to the 

data in Table 3.1. 
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Line number i: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

Data H~i [m]: 

9.66 

9.44 

9.18 

9.17 

8.85 

8.79 

8.60 

8.58 

8.54 

8.49 

8.09 

8.08 

8.06 

7.47 
7.42 

7.41 

7.31 

7.16 

6.92 

Table 3.1: Listing of annual significant wave height [m] from gumbel . dat. File con- 

tains column 2 data only; line numbers are inserted here for clarity. 

3.1 Generalized Gumbel Results 

The annual significant wave height data consists of 19 values listed in Table 3.1. The 

data are stored in the file gumbel . dat. For the sake of clarity they are input in 

decreasing order; however, this is not required by the program. 

The control data are stored in gumbel. in. Table 3.2 lists this file. The first 

line of this file contains three values. The first value is xmin=O.0, which sets the 

lower threshold value. Note, however, that this is not used in this case of Gumbel 

distribution since there is no cutoff value. This threshold value is used when gener- 

alized Weibull distribution is fit to the data (see Chapter 2). The second argument, 

if lag=l, indicates that x values are to follow in the file and the program will calculate 

corresponding cdf values. The third argument, itype=2, indicates that a generalized 

Gumbel distribution is to be fit to the data in file gumbel. dat. The remaining lines 

list the actual x values requested. 

Output. Table 3.3 lists the corresponding output file gumbel. out for this exam- 

ple. It also reports the first four moments from these data, as estimated by calmom, 
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().()() 1 2 ; XMIN=LOWER THRESHOLD, IFLAG=l TO GET CDF FOR GIVEN X; 1TYPE=2 TO FIT GENERALIZED GUMBEL 

10.00 

9.66 

9.44 

9.18 

9.17 

8.85 

8.79 

8.60 

8.58 

8.54 

8.49 

8.09 

8.08 

8.06 

Table 3.2: Listing of input file, gumbel. in, with control data for driver program. 

which are used as input to fitting. Finally, the model predicts the first 10 absolute 

moments, E[x”]. Note that these are consistent with the first four moments found for 

the data, For example, EIXl] = 8.275, the mean value px, while E[X2] = o% + pi, 

or .8192 + 8.2752=69.1. Similarly, the predicted third and fourth moments can be 

shown consistent with those estimated from the data. 

As discussed in Chapter 2, note that to use the input files gumbel . in and gumbel. dat 

with the driver program they must be copied to the files driver. in and driver. dat 

respectively. The output, written to driver. out, should then be comparable to 

gumbel. out. 

In order to generate a smooth plot of the generalized Gumbel distribution, an 

input file similar to driver. in with a greater number of input values to compute 

corresponding CDF values was used. This distribution is plotted in Figure 3.1 along 

with the observed data values. It appears to capture fairly well the systematic cur- 

vature of the data on the Gumbel probability scale used. 

3.2 Comparison of Three Generalized Distribu- 
tions for Wave Height 

Because we deal here with annual extreme values, the Gumbel distribution is the 

natural choice of parent distribution. We may ask, however, what effect is achieved if 
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Number of Data Processed: 19 

** MOMENT RESULTS ** 

Mean: 8.275 

Standard Deviation: 0.819 

Skewness: -0.053 

Kurtosis: 1.905 

** FRACTILE RESULTS (FITTING) ** 

x: 

10.000 

9.660 

9.440 

9.180 

9.170 

8.850 

8.790 

8.600 

8.580 

8.540 

8.490 

8.090 

8.080 

8.060 

CDF : 

0.998 

0.978 

0.937 

0.846 

0.842 

0.690 

0.662 

0.580 

0.572 

0.557 

0.539 

0.427 

0.424 

0.419 

** PREDICTED MOMENTS (FITTING) ** 

N: E[X**N]: 

1.000 0.827E+01 

2.000 0.691E+02 

3.000 0.583E+03 

4.000 0.496E+04 

5.000 0.426E+05 

6.000 0.369E+06 

7.000 0.322E+07 

8.000 0.282E+08 

9.000 0.250E+09 

10.000 O.222E+1O 

Table 3.3: Listing of output file, gumbel. out, produced by driver program. 
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Figure 3.1: Generalized Gumbel Distribution for Annual Extreme Wave Height-19 

Data. 
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Figure 3.2: Comparison of Generalized Gaussian, Gumbel, and Weibull Distributions 

for Annual Extreme Wave Height. 

a different choice of parent distribution is selected. This is investigated in this section. 

We again use the same data set as listed in Table 3.1. Thus the input data file 

is same as driver. dat of Section 3.1. However, the control input file driver. in 

is varied so that itype is either 1, 2, or 3. These three different values of itype 

give three generalized distributions: generalized Gaussian (it ype = 1), generalized 

Gumbel (itype = 2), and generalized Weibull (itype = 3). 

The three distribution are shown in Figure 3.2. The figure shows wave height re- 

sults up to the 1000-year fractile, i.e. for which p=.999 and hence – ln(– ln(p))=6.9. 

The pattern of variation follows that of the underlying parent distributions: the 

Weibull has the narrowest upper tail and hence predicts the lowest extreme values, 

while the Gumbel predicts the largest. Most notably, however, all three parent dis- 

tributions predict quite similar wave heights over this domain of interest. 

This suggests that knowledge of four moments is sufficient to control the tail 

behavior of interest. This apparent robustness of the four-moment description is en- 
couraging, particularly in cases where the optimal parent distribution is not obvious. 

Of course this conclusion may be problem-dependent; the user is encouraged to vary 

the choice of itype for the problem at hand. 
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Technical Background and Additional 

Details 

4.1 Motivation 

The fitting routine has been developed to modify standard, commonly used dis- 

tributions to better match observed tail behavior. In particular, cubic distortions of 

these standard “parent” distributions are sought to match the first four moments of 

the data. We may then ask why precisely four moments are used to fit the probabil- 

ity distribution of X—and not two, three, five, ten, etc. Conventional models are of 

lower order, requiring only one or two moments. The problem is that a number of 

plausible models, with very different tail behavior and hence fatigue reliability, can 

be fit to the same first two moments. This scatter in reliability estimates is said to be 

produced by model unce~tainty. This is prevalent in low-order, one- or two-moment 

models. (Note that many common fatigue load models include only one parameter; 

e.g., the Rayleigh and exponential models. ) 

To avoid this model uncertainty, which is difficult to quantify, one is led to try 

to preserve higher moments as well. This will help to discriminate between various 

models, and hence reduce model uncertainty. The benefit does not come without cost, 

however: higher moments are more sensitive to rare extreme outcomes, and hence 

are more difficult to estimate from a limited data set. This is known as statistical 

uncertainty, which reflects the limitations of our data set. 

Thus, our search for an “optimal” model reflects an attempt at balance between 

model and statistical uncertainties. Practical experience (e.g., Winterstein, 1988) 

suggests that four moments are often sufficient to define upper distribution tails over 

the range of interest. This experience motivates the generalized models developed 

here. It is again supported by the results of Section 3.2, in which extreme wave 

heights are insensitive to the choice of parent distribution, once four moments have 

been specified. 
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4.2 Underlying Methodology: fitting 

The fitting routine begins with a theoretical, 2-parameter “parent” distribution. 

In the current implementation, the user may choose Gaussian, Gumbel, or Weibull 

parent distributions. Denoting this parent variable as U, fitting then models the 

physical random variable X through a cubic transformation of U: 

X= C()+CIU+C2U2+C3U3 (4.1) 

The optimizer adjusts the coefficients C. through an iterative scheme until the differ- 

ence between the requested skewness, as, and kurtosis, CY4, (see xmom (3) and xmom (4), 

section 1.2) and those of the generalized model in Eq. 4.1 (CHx and a4x ) are mini- 

mized. 

The optimizer also restricts the coefficients so that Eq. 4.1 remains monotonically 

increasing, producing a well-behaved model that only mildly modifies the underlying 

parent distribution. This leads, for example, to requiring CS z O so that X in Eq. 4.1 

continues to grow as U becomes large. This in turn makes it difficult to model cases 

with tails that are narrower than those of the parent distribution. In particular, it 

is difficult to use Eq. 4.1, with positive C3, to model situations in which the desired 

kurtosis, cr4, is less than that of the parent variable, a~u. In this case fitting inverts 

the model, seeking to fit a model analogous to Eq. 4.1 in which the roles of X and 

U are interchanged. (In this view, one seeks to expand the distribution tail of the 

actual variable X to produce a parent variable U, so that C3 becomes positive. ) 

Note that this switching between two dual models, based on the size of a~, occurs 

automatically within fitting and should be of no consequence to the user. Adding 

such a dual model, however, has has been found to greatly increase modelling flexi- 

bility for small kurtosis cases. These have been found to arise both in extreme and 

fatigue loading applications. 

Finally, in whichever form the model is defined, the coefficients C. are chosen to 

minimize the error e, defined as 

e= d( cr3 – cY3x)* + (a4 – c14x)* (42) 

The speed of executing f itt ing is governed largely by the speed of this optimization; 

i.e., by the amount of effort (trial c . values) needed to achieve an acceptably small 

tolerance, tto~. The driver program sets c~o/=.01 for the examples shown. The user can 

vary this tolerance, with the resulting change in computation time to be expected. 

4.3 Underlying Methodology: calmom 

To motivate the need for this routine, we must consider a brief background in sta- 

tistical moment estimation. If we seek to estimate the ordinary mean value E[X]=p 
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from data Xl... X., a natural estimate is the simple average value ~=~~=1 Xi/n. 

Similarly, the k-th order “ordinary” moment, E[X~], is naturally estimated by the 

corresponding average ~~=1 X,k/n. 

The difficulties arise when we instead seek, as in many applications, to estimate 

not ordinary but central moments; i.e., of the form p~=13[(X – p)~] for k=2, 3, 4 . . . . 

(Note that fitting input stops at k=4: 0r=p\/2, Qs=p3/p~’, and a4=pA/p~.) 

The problem here lies in its circular aspect: we must first estimate the unknown 

first moment p before seeking to estimate p~=E[(X – p)~]. And, if we use the same 

data set for both purposes, we typically find too-low estimates of pz, P3, PA, etc. 

because our p value is artificially tuned to best match the mean of the observations. 

Those exposed to a standard statistics course will best recognize this phenomenon 

when estimating the variance p2: to inflate the sample variance to account for this 

bias, the sum of squared deviations is divided by n – 1 rather than n. 

While unbiased estimates of the higher moments p3, p~, . . . are less familiar, they 

are available in the statistical literature (Fisher, 1928): 

p2 . J--m2 
n—l 

“ = (n - l~~n - 2)m3 

(4.3) 

(4.4) 

(4.5) 

n’ 

“ ‘3P;= (n- l)(n-2)(n - 3)[(n+ 1)m4 - 3(n - l)m;] 
(4.6) 

in terms of the sample central moment mk=~~=l (Xi — ~)k/n. Eq. 4.4 is the conven- 

tional result for the sample variance. 

Remaining Bias. Finally, the routine calmom uses these results to estimate 

the quantities aZ by p~5, as by p3/(p~5), and Qa by pA/(p~). Because these vary 

nonlinearly with p., they may still contain some bias although the p. estimates do 

not. 

For example, if we fit a Gumbel model to the 19 wave height data from Chapter 3, 

the true skewness and kurtosis values are 1.14 and 5.40. However, simulating 10000 

data sets of size n= 19 and running each through calmom, we find on average the 

skewness 0.79 and kurtosis 3.89 (Winterstein and Haver, 1991). 

To address this problem, the fitting routine has an automatic check for remain- 

ing bias through simulation. This is why ndata is given as an input parameter. After 

fitting constructs a distribution with moments from the input array xmom, many 

similar data sets (of size ndat a) are simulated from this distribution. If the moments 
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Figure 4.1: Effect of Ignoring Bias: Wave Height Example. 

predicted from calmom differ appreciably on average from the input values, new the- 

oretical estimates of the moments are constructed. This estimation-simulation loop 

is continued iteratively until satisfactory convergence is found. 

Note that the fitting routine does not perform this simulation if its input pa- 

rameter ndata ~ 100. This value can be hard-wired if the user wishes to bypass this 

option. Figure 4.1 shows the effect of enabling this “unbiased” option (the default) 

and disabling it (using “raw” moments from calmom directly) for the generalized 

Gumbel model produced for the example given in Chapter 3. There is relatively little 

difference found in these cases. Larger effects may be found for cases of (1) fewer 

data and/or (2) distributions with broader tails. 

4.4 Notes on Usage 

The fitting routine has limiting conditions that users should note. When these 

conditions are encountered, appropriate error messages are written to the output 

file/device corresponding to the input logical unit number ioout. This section ex- 

plains the meaning of these messages and discusses other details regarding fitting 

usage. 
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4.4.1 Errors in Matching Moments 

Note that in most practical cases, the coefficients c. in Eq. 4.1 can be chosen so that 

the error c, as given in Eq. 4.2, falls within the user-defined tolerance limit etO1. In 

rare cases the minimized error exceeds etO1. In these cases fitting writes an error 

message indicating the magnitude of t, the error norm of the skewness and kurtosis 

in Eq. 4.2. 

4.4.2 Lower Tail Limiting Values 

Lower tail limiting values are only a problem when the parent distribution is Weibull. 

In this case the variable U in Eq. 4.1 has Weibull distribution, and hence a minimum 

value of O. Because Eq. 4.1 is monotonic, the corresponding smallest possible value 

of the physical variable X is co. This physical lower limit % can be either greater or 

less than zero, since the optimized Weibull model in Eq. 4.1 will not in general have 

its z intercept at exactly zero. 

This may lead to situations that seem anomalous. If the lower limit ~ is negative, 

for example, fitting may estimate negative values of X for probabilities near zero. 

Conversely, if the lowest possible value co is positive, an input X value below ~ cannot 

occur and fitting will return a zero cumulative probability (CDF=O). When xmin 

is not zero the situation is entirely analogous: co may be greater or less than xmin. 

In practice we believe this to be a minor issue for the following reasons: 

● T’he routine fitting is intended for applications where large X values (upper 

distribution tails) are crucial. This is the motivation for preserving higher mo- 

ments. Its accuracy at the lower end of the distribution may not be of great 

concern, 

● If we wish to preserve a positive range of values, one can easily introduce a 

transformation to the data. For example, apply fitting not to the physical 

variable X but rather Y=ln(X), based on the first four moments of Y. Then 

the reverse transformation X=exp(Y) will still be positive. 

● The routine fitting is intended for applications where the true distribution is 

not too different than a Weibull model would predict. In such cases we may 

expect the nonlinear terms (proportional to ~, C2, and C3) in Eq. 4.1 to be 

relatively small on average relative to the linear term. Thus, compared to the 

range of likely variation of X values, co may seem to lie rather “close” to zero. 
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Appendix A 

Driver Source Code Listing 

c===============================================================.======= 

c 

c 

c 

c 

c 
c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

THIS PROGRAM DEMONSTRATES THE USE OF THE SUBROUTINES 

CALMOM . . . 

FITTING. . . 

INPUT FILES: 

OUTPUT FILE: 

USAGE : 

CALCULATES FOUR MOMENTS OF A GIVEN INPUT DATA SET 

USES THESE MOMENTS TO FIT A GENERALIZED 

(GAUSSIAN, GuMBEL, WEIBULL) DISTRIBUTION FUNCTION 

DRIVER.DAT. . . INPUT DATA USED TO ESTIMATE MOMENTS 

DRIVER.IN. . . CONTROL DATA USED IN CALLING FITTING 

(NOTE: SAMPLE EXAMPLE FILES *.DAT AND *.IN SHOULD 
BE COPIED TO DRIVER.DAT AND DRIVER.IN BEFORE 

EXECUTING) 

DRIVER.OUT 

COMPILE AND LINK DRIVER, CALMOM, AND FITTING 

PROGRAM DRIVER 
c---------- ---------- ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== = 

IMPLICIT REAL*8 (A-H,o-z) 

PARAMETER ( NDMAX = 20000 , NXMAX = 2000 ) 

DIMENSION DATA(NDMAX),CDF(NXMAX),X(NXMAX) ,XMOM(4),PMOM(1O) 

c 

c ________________________-__-------------OpEN FILES FOR INPUT AND OUTPUT 

IODAT = 10 

IOIN = 11 

IOOUT = 12 

OPEN(IODAT,FILE=’driver.dat’) 
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OPEN( IOIN, FILE= ’driver .in’) 

OPEN(IOOUT, FILE= ’driver .out’ ) 

c 

c- -----------------------------------------------------READ CONTROL DATA 

c 

c XMIN LOWER THRESHOLD DATA VALUE USED IN THE ANALYSIS 

c IFLAG INPUT/OUTPUT FLAG: 

c IFLAG = O.... .FINDS X FOR INPUT CDF VALUES 

c IFLAG= 1 . . . . .FINDS CDF FOR INPUT X VALUES 

c ITYPE CONTROL VARIABLE TO CHOOSE THE GENERALIZED 

c DISTRIBUTION TYPE 

c ITYPE = i :FIT GENERALIZED GAUSSIAN DISTRIBUTION 

c ITYPE = 2 :FIT GENERALIZED GUMBEL DISTRIBUTION 

c ITYPE = 3 :FIT GENERALIZED WEIBULL DISTRIBUTION 

c X(NXMAX) LEVELS OF X AT WHICH DISTRIBUTION IS REPORTED 

c CDF(NXMAX) CDF VALUES (NON-EXCEEDENCE PROBABILITIES) FOR 

c EACH X LEVEL 

c NXMAX MAXIMUM NUMBER OF X OR CDF VALUES REQUESTED 

c NX ACTUAL NUMBER OF X OR CDF VALUES REQUESTED 

c 

READ(IOIN,*) XMIN,IFLAG,ITYPE 

IF (ITYPE .NE. 3) XMIN = o.do 

IF (IFLAG.EQ.0) THEN 
DO 10 IX = l,NXMAX 

10 READ(IOIN,*,ERR=30,END=30) CDF(IX) 

c READ CDF VALUES IF IFLAG=O 

ELSE 
DO 20 IX = l,NXMAX 

20 READ(IOIN,*,ERR=30,END=30) X(1X) 

c READ X VALUES IF IFLAG=l 

END IF 

30’ NX=IX-1 

c 

c --------------------------------------------------------READ INPUT DATA 

c 

c 

c 

c 

c 

40 

DATA(NDMAX) ARRAY OF INPUT DATA FOR WHICH MOMENTS ARE FOUND 

NDMAX MAXIMUM NUMBER OF INPUT DATA PERMISSIBLE 

NDATA ACTUAL NUMBER OF INPUT DATA 

NDATA=O 

READ(IODAT,*,ERR=50,END=50) xl 

NDATA=NDATA+l 

DATA(NDATA)=X1 

GO TO 40 
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50 CONTINUE 

c 

c _.____---________---_-------------------CALL CALMOM T(I ESTIMATE MOMENTS 

c 

c XMOM(4) ARRAY OF FOUR 
c XMOM(l) = 
c XMOM(2) = 
c XMOM(3) = 
c XMOM(4) = 
c 

CALL CALMOM(XMOM,DATA,NDATA,NDMAX,XMIN, ITYPE) 

c 

MOMENTS COMPUTED FROM DATA: 

MEAN 

STANDARD DEVIATION 

SKEWNESS 

KURTOSIS 

c '----------------------------------------------------------WRITE OUTPUT 
c 

IF (ITYPE .EQ. 3) THEN 

WRITE(IOOUT,900) ‘ Lower Threshold Value:’, XMIN 
ENDIF 

WRITE(IOOUT, * ) ‘ Number of Data Processed:’, NDATA 

WRITE(IOOUT, * ) ‘ ‘ 

WRITE(IOOUT, * ) ‘ ** MOMENT RESULTS **’ 
WRITE(IOOUT, * ) ‘ ‘ 

WRITE(IOOUT,900) ‘ Mean: ‘ , XMOM ( 1 ) 
WRITE(IOOUT,900) ‘ Standard Deviation:’, XMOM(2) 
WRITE(IOOUT,900) ‘ Skewness:’, XMOM(3) 
WRITE(IOOUT,900) ‘ Kurtosis:’, XMOM(4) 
WRITE(IOOUT, * ) ‘ ‘ 

c 

c -_____-____--_-------CALL FITTING TO ESTIMATE X FOR GIVEN CDF (IFLAG=()) 

c OR CDF FOR GIVEN x (IFLAG=l) 
c 

c ETOL ERROR TOLERANCE IN MATCHING OBSERVED MOMENTS 
c . . . HERE WE ACCEPT 0.01 ERROR---USER CAN ALTER 
c 

c PMOM(10) ARRAY OF PREDICTED ABSOLUTE MOMENTS FROM MODEL 

c PMOM(I) = PREDICTED AVERAGE OF X**N, N=1..1O 

c 

ETOL = .OIDO 

CALL FITTING(ITYPE,XMOM,NDATA,XMIN,X ,CDF,NX,PMOM,IFLAG,IOOUT,ETOL) 
c 

c '----------------------------------------------------------WRITE OUTPUT 
c 

WRITE(IOOUT, * ) ‘ ** FRACTILE RESULTS (FITTING) **J 
WRITE(IOOUT, * ) ‘ ‘ 

WRITE(IOOUT, * ) ‘ x: CDF : ‘ 
WRITE(IOOUT, * ) ‘ ‘ 
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D0601X=1, NX 

60 WRITE (IOOUT,901) X( IX), CDF(IX) 

WRITE (IOOUT, * ) ‘ ‘ 

WRITE (I OOUT, * ) ‘ ** PREDICTED MOMENTS (FITTING) **’ 

WRITE(IOOUT, * ) ‘ ‘ 

WRITE(IOOUT, * ) ‘ N: E[X**N]:’ 

WRITE(IOOUT, * ) ‘ ‘ 

DO7OIX=1,1O 

70 WRITE(IOOUT,902) REAL(IX),PMOM(IX) 

c 

900 FORMAT(A26, FIO.3) 

901 FORMAT(16X,2F1O.3) 

902 FORMAT(16X, F1O.3,EIO.3) 

c 

STOP 

END 
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